AFRL-SR-AR-TR-09-0081

REPORT DOCUMENTATION PAGE |

The public reporting burden for 1his collection of information is estimaled lo average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathenng and
maintaining the data needed, and compleling and reviewing lhe collection of information. Send comments regarding this burden estimale or any other aspect of this collection of information, including
suggestions for reducing the burden, to the Depariment of Defense, Executive Service Directorate (0704-0188). Respondents should be aware that notwithstanding any other provision of law, no
person shall be subject to any penally for failing 1o comply with a collection of information if it does nol display a cumrently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ORGANIZATION.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (fFrom - To)
18-02-2009 Final 15/02/07-30/11/08

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Combining Exact and Heuristic Approaches to Discrete Optimization FA9550-07-1-0177

5b. GRANT NUMBER

5¢. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER
George L. Nemhauscr
Mathieu W. Savelsbergh

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Georgia Tech Research Corporation REPORT NUMBER

505 10th St.

Atlanta, GA 30332-0001 240664R

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S)
Air Force Office of Scientific Research/NL AFOSR

875 N. Randolph St., Room 3112

Arlington, VA 22203 11. SPONSOR/MONITOR'S REPORT

Dr. Donald Hcam NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release: distribution is unlimited

13. SUPPLEMENTARY NOTES
none

14. ABSTRACT

In the last decade the computational power of discrete optimization methodology has increased remarkably to the point where problems that could
not be solved with days of computation can now be solved in minutes by commercial solvers. This success has stimulated the need for methodology
to solve even much larger problems and the desire to solve problems in real-time. We have conductcd research that has yielded computationally
effective algorithms to provide high-quality solutions to very large-scale planning problems and high-quality solutions in (nearly) real-time to
operational problems. Traditionally, this goal has been pursucd with heuristic approaches. The underlying theme of our research has been difterent.
We use exact optimization whenever possible. For examplc, to solve problems that are too large for exact optimization, we embed exact
optimization in a heuristic search algorithm. To solve real-time instances that differ only by small perturbations of cocfficients, we use exact
optimization as a planning tool whercby we solve a core instance exactly and use results from its solution to make the solution of the real-time
instances much faster than would be the case if they were solved from scratch.

15. SUBJECT TERMS
Discrete optimization, heuristics, exact methods

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF [18. NUMBER [19a. NAME OF RESPONSIBLE PERSON
a. REPORT | b. ABSTRACT | c. THIS PAGE ABSTRACT g; ces | R Scott Goodwin
U U U uu 19b. TELEPHONE NUMBER (include area code)
404-894-6920

Standard Form 298 (Rev. 8/98)
Prescnbed by ANSI Std. 23818
Adobe Professional 7.0

Combining Exact and Heuristic Approaches

for Discrete Optimization
George L.Nemhauser, Martin W.P. Savelsbergh
Contract #: FA9550-07-1-0177
Final report

Executive Summary

In the last decade the computational power of discrete optimization methodology has iicreased
remarkably to the point where problems that could not be solved with days of computation eau
now be solved in minutes by commercial solvers such as CPLEX and XPRESS. This success has
stimulated the need for methodology to solve even much larger problems and the desire to solve
problems in real-time. We have eondueted researeh that has yielded computationally effective
algorithins to provide high-quality solutions to very large-scale planning problems and high-quality
solutions in (nearly) real-time to operational problems.

Traditionally, this goal has been pursued with heuristie approaches. The underlying theme
of our research has been different. We use exact optimization whenever possible. For exawple,
to solve problems that are too large for exact optimization, we embed exact optimization in a
lieuristic search algorithm. To solve real-time instances that differ only by small perturbations of
coeflieients, we use exact optimization as a planning tool whereby we solve a eore instanee exactly
and use results from its solution to make the solution of the real-time instanees mueh faster than
would be the ease if they were solved from scratch. Furthermore, we revisit the least studied and
least understood aspeet of integer programmming methodology, namely branching, and develop novel
branehing strategies based on learning eoncepts and restart ideas.

The faculty involved in this research are Professor George Nemhauser {PI) and Professor Martin
Savelsbergh (eo-PI). The students involved are Michael Hewitt, Fatima Kilinc-Karzan, and Juan
Pablo Vielma. Hewitt is expected to complete his PhD thesis entitled Combining Exaet and
Heuristic Methods for Discrete Optimization this summer. Vielma will also complete this summer
and his thesis is entitled Mixed Integer Programming Approaches for Nonlinear and Stochastic
Programming. Papers submitted for publication so far are:

M. Hewitt, G.L. Nemhauser, and M.W.P. Savelsbergh. “Combining Exaet and Heuristic Ap-
proaches for the Capaeitated Fixed Charge Network Flow Problem.” Submitted to INFORMS J.
on Computing (2008).

F. Kiling-Karzan, A. Toreillo, S. Ahmed, G.L. Nemhauser, M.W.P. Savelsbergh. “Approximating
the Stability Region for Binary Mixed-Integer Programs.” Submitted to Operations Rescarch
Letters (2008).

F. Kilm¢-Karzan, G.L. Nemhauser, M.W.P. Savelsbergh. “Information Based Branching Rules for
Binary Mixed Integer Problemns.” Submitted to INFORMS J. on Coniputing (2009).

20090325299

1 Embedding Exact Optimization in Heuristic Search

Despite the mmpressive gains that have occurred i mixed-integer programming (MIP) solvers in the
last decade, there are still many significant practical problems that cannot be solved to optunality
using the leading commercial solvers such as CPLEX and XPRESS. These problems are either
too large or too complex for reasons such as difficulty irr finding a feasible solution or a large gap
between the values of the linear programming (LP) relaxations and MIP optimal solutions. In such
situations, a pragmatic alternative is to search for provably good solutions.

Omne of our research thrusts has been to use neighborhood searclr to obtain nearly optimal
solutions to liuge and complex problems. The basic idea is very simple. A subproblemr involving a
suitably small subset of tlie variables is selected and all other variables are fixed. This subproblem
is solved by a MIP solver. Hopefully a better solutiorr to the whole problem is obtained. Then we
repeat the process by choosing a different subproblem (see Algorithm 1).

Algorithm 1 Neighborhood Search

while the search time has not exceeded a prespecified limit 7' do
Choose a subset of variables V
Solve the IP defined by variables in V'
if an improved solution is found then

Update the global solution

end if

end while

The key to making this approach work is problem dependent. We illustrate this approach on
the Fixed Charge Network Flow (FCNF) problem, which is a classic discrete optimization problem
in which a set of commodities has to be routed through a directed network. Each commodity has
an origin, a destination, and a quantity. Each network arc has a capacity. Tlere is a fixed cost
associated with using an arc and a variable cost that depends omr the quantity routed along the
arc. The objective is to minimize the total cost. Two versions of the problem are considered:
commodities have to be routed along a single path and commodities car be routed along nmltiple
paths.

By selecting a suitably small subset of the commodities and assuming that the flow paths for
all other commodities are fixed a tractable integer program can be defined and solved using an
[P solver. Similarly, by selecting a suitably small subnetwork and assuming all flows outside the
subnetwork are fixed a tractable integer program can be defined and solved using an IP solver.
Hopefully, a better solutionr to the whole problem is obtained by these subproblem solves. The
process can be repcated multiple times by choosing different subsets of commodities and different
subnetworks.

Both the selection of a subset of commodities and the selection of a subnetwork define a subset
of network arcs. If this subset of network arcs contains all the arcs that carry flow in the current
best solution, then we can sced the IP with that solution and ensure that we only find solutions
that arc at least as good as the current best. Therefore, all our schemes for defining a smaller 1P
start from the subset of arcs associated with the current best solution. Also, our schemes do not
choose arcs directly but choosc patlis, thus ensuring that every arc chosen exists in some feasible
solution. Examples of commodity subset selection ideas include:

e Sclect conmmnoditics whose paths i thie current best solution use arcs for which the reduced
cost in the most recent LP solution are far from 0. Thus, we try to re-routc conmumodities
away from arcs that are far away from satisfying complementary slackness.

e Suppose in the current best solution, there is a node witli two commodities entering ou a
single arc, but leaving on two different arcs. When these arcs are not fully used, the two
commodities are good candidates for re-optimization.

e Since we want to find sets of commodities that are likely to share arcs, we search for com-
modities whose paths in the current best solution are close together.

e Suppose the network is very large and there are two commodities and that have only one
feasible path from their source to their sink. In that case, it is unlikely that these paths have
a common arc hence re-optimizing commodities the two commodities together is not likely to
lead to improvements. Conversely, if the two commodities have many paths, then they are
likely to share arcs and thus are good candidates to optimize together.

Exainples of subnetwork selection ideas include (they refer to to the path-based formulation we
maintain to get dual bounds):

e Select paths that often appear in improving solutions, but are not in our current best solutiou.

e Select paths that appear in the optimal solution to the LP relaxation of the path-based
formulation.

e Select the path produced for each counnodity by the pricing problem associated with the
path-based formulation.

Note that the approach outlined above differs in two respects from more traditional neighbor-
lood search methods: (1) the neighborhood is explored using integer programming techuology. and
(2) the neighborhood selection is guided by appropriatcly chosen problem dependent metrics and
changes as the search progresses. Note also that this approach can be used on extremely large
instances because the algorithm never requires the full instance to be in memory.

The resulting solution approach is very effective. For instances with 500 nodes, with 2000, 2500
and 3000 arcs, and with 50, 100, 150, and 200 commodities, we conipared the quality of the solution
produced by our solution approach with the best solution found by CPLEX after 15 minutes of
computation and after 12 hours of computation. On average, the solution we found in less than 15
minutes is 35% better than CPLEX’ best solution after 15 minutes and 20% better than CPLEX’
best solution after 12 hours. Furthermore, we find a better solution than CPLEX’ best solution
after 15 minutes within 1 minute, and CPLEX’ best solution after 12 hours within 3 minutes. On
these instances the approach produces dual bounds that are 25% stronger than the LP relaxation.
We also compared the quality of the solutions produced by our solution approach with the quality
of the solutions produced by a recent implementation of the tabu search algorithm of Ghamlouche
et al. For nearly all instances in their test set, our solution is better than the solution of the tabu
search algorithnm and this solution is found much faster.

Table 1 presents details of one of our experiments. It shows the value of the best solution found
by CPLEX in 15 minutes and 24 hours, the value of the solution found by our heuristic search, and
the difference in quality between the solutions found by CPLEX and the one found by our heuristic
scarch. An “X” in a column indicates that no feasible solution was found. {(The value reported for
our heuristic search is the value of the solution produced within 15 minutes.)

We observe that in every instance IP Search finds a better solution in 15 minutes than CPLEX
does in 12 hours. We also see that the improvement over the solution found by CPLEX in 15
nminutes is significant, often greater than 30%. Even the improvement over the solution found by
CPLEX in 12 hours is impressive, often greater than 20%. Unfortunately, little can be said with
confidence regarding the true optimality gap of the solutions produced by IP Search since the dual

Table 1: Primal-side Comparison with CPLEX

CPLEX-15M | CPLEX-12H | IP Search | CPLEX-15M | CPLEX-12H

Problem Gap Gap
500,2000,50 F.1, 5,301,081 5,301,081 3,910,120 3557 3557
500,2000,50,F, T X 7,027,065 | 5,249,040 N/A -51.02
500,2000,100,F,1, | 8,944,724 8,200,799 | 6,764,310 -32.23 -22.70
500,2000,100,F, T 10,199,000 8,306,181 7,718,750 -32.13 -7.61
500,2000,150,F,L 10,996,000 10,080,000 8,618,060 -27.59 -16.96
500,2000,150,F, T 12,115,000 10,770,000 9,448,890 -28.22 -13.98
500,2000,200,F,L 13,808,000 12,824,000 10,333,200 -33.63 -24.10
500,2000,200,F,T X X 12,425,600 N/A N/A
500,2500,50,F,L 4,611,275 4,611,275 3,841,350 -20.04 -20.04
500,2500,50,F, T 5,779,926 5,084,529 4,666,740 -23.85 -8.95
500,2500,100,F,L 9,351,042 9,251,042 6,875,420 -36.01 -34.55
500,2500,100,F,T 9,724,997 7,995,284 7,235,520 -34.41 -10.50
500,2500,150,F,L | 13,660,000 12,497,000 | 9,730,100 -40.39 -28.44
500,2500,150,F, T 11,385,000 10,683,000 7,934,360 -43.49 -34.64
500,2500,200,F,L. | 15,539,000 13,468,000 | 11,261,300 -37.99 -19.60
500,2500,200,F,T | 18,906,000 14,948,000 | 12,825,300 4741 -16.55
500,3000,50,F, L 5,008,318 5,098,318 | 3,596,980 -41.74 -41.74
500,3000,50,F,T 5,615,096 4,866,768 4,504,260 -24.66 -8.05
500,3000,100,F,L 8,721,798 8,721,798 6,577,980 -32.59 -32.59
500,3000,100,F, T 10,119,000 8,330,109 7,517,970 -34.60 -10.80
500,3000,150,F,L 12,628,000 12,623,000 9,214,960 -37.04 -36.98
500,3000,150,F,T 12,615,000 10,147,000 9,186,840 -37.32 -10.45
500,3000,200,F,L 15,039,000 13,441,000 10,853,400 -38.56 -23.84
500,3000,200,F, T | 17,883,000 13,674,000 | 11,578,000 -54.46 -18.10
Average -35.18 -22.95

bouuds produced by CPLEX change very little over the course of the execution aud are likely to
be weak. In fact, for many of the loosely capacitated instances, CPLEX did not fiud a significantly
better primal solution in 12 hours than it did in 15 minutes. This highlights the difficulty that an
LP-based branch-and-bound algorithm can have in finding good primatl solutious when the dual
bounds are weak.

For further details on the approach and additional computational results see:

M. Hewitt, G.L. Nemhauser, and M.W.P. Savelsbergh. “Combining Exact and Heuristic Ap-
proaches for the Capacitated Fixed Charge Network Flow Probleni.” Submitted to INFORMS J.
on Coniputing (2008).

2 Approximating the Stability Region for Binary Mixed-Integer
Programs

Suppose we have a difficult discrete optimization problem with some binary variables aud a linear
objective function for these variables. In addition to findiug an optimal solution, we would like to
know how niuch the objective vector can change while maiutaining the optimality of the solution.
This stability uformation is useful, for example, when solving problems with perturbed objective
functions rapidly.

We consider thie optimization problem

2* =max c"z + h(y)
s.t. (z,y) € X (P(c))
z € {0,1}",

where ¢*z = Y iz, N = {1,...,n} and (z*,y") is an optimal solution. We are interested in
the stability of (z*,y*) with respect to variations of the cost vector c¢*.

Definition 2.1. The stability region of (z*,y*) is the region C C R" s.t. ¢ € C if and only if
(z*,y*) is optimal for P{c). That is, C = {c € R" : ¢(z — z*) < h{y*) — h{y),V {z,y) € X}.

By possibly complementing variables, we assume without loss of generality that 2* = 0, so the
optimal value of P is z* = h(y").

Remark 2.1. Let (Z,9) be feasible for P, with objective value 2 = ¢*& + h(y) < z*. Suppose ¢ € R"
satisfies ¢x > z* — 2+ c*%. Thené & C.

Remark 2.2. Let & € {0,1}", and define v(Z) = max; y)ex My), with v(Z) = —oc if no y satisfics
(Z,y) € X. ThenC = {c € R": cx < h{y*) — v(z),V z € {0,1}"}.

Reniark 2.2 implies that C' is a polyhedron possibly defined by an exponential number of in-
equalities. We choose to approximate C' using polyhedra defined by polynomially many inequalities.
The next two definitions further cxplain this approximation.

Definition 2.2. Let C be the stability region of (z*, ¥*). An outer approrimation of C is a region
C*t C R satisfying C* 2 C. An inner approzimation of C is a region C~ C R satisfying C~ C C.

The following are two simple but important consequences of Definition 2.2 that hclp us obtain
small outer approximations and large inner approximations.

Proposition 2.3.
i) If C’1+, Cy are outer approzimations, C’l+ N C’2+ 1$ an outer approrimation.
uw) If C7,C5 are inner appromimations, conv(CT U Cy) is an inner approrimation.
Next, we show how to obtain inner and outer approximations of C' by solving n problems
{P, : j € N}, where each P, is given by

zj =max c'z + h(y)

st. (z,y) € X (P
z e {0,1}"
z; = 15

Throughout, we assume without loss of generality that all problems P; are feasible. Accordingly,
we assume that we have solved the problems P; for every j € N, and determincd optimal solutions
(z7,17) with corresponding objective values z;.

The following observation follows directly from Remark 2.1 and Proposition 2.3.

Proposition 2.1. The set Ct = {(’ ER™:cx? < 2* — 2+ crl\Vje N} 18 an outer approrima-
tion of C.

Let v; = 2* — z; + ¢}. Observe that the outer approximation C'™* of Proposition 2.1 satisfies

{CECJ“:CZC*}Q{CER":C;Scjgfyj,VjeN}. (1)

In other words, in the direction ¢ > ¢*, the stability region C of (z*,y*) is contained in a box
defined by the values ;.
To determine an inner approximation, we make use of the next result.

Algorithm 2 Binary Solution Cover

Require: An optimization problem P witlr optimal solution (2*, y*) satisfying =* = 0.

Set (29,4°) — (z*,y*), zo — z*, I — N.
Add cut D = (3, x: > 1) to P.
fork=1,...,ndo
Resolve the modified P; get new optimal solution (z*, y*) and objective value c*z*+h(y*) = 2.
if P is infeasible then
Set I «— I.
Rcturn & and exit.
end if
Set It — {ie N:zb=1}, I, « INI}.
Set I «— I'\ I,_; modify cut D accordingly.
end for

Proposition 2.2. Let & = (c},.. A PO ,¢). Then&@ € C,Yj€EN.

Theorem 2.3. Suppose we order the x variables so that z* > zy > 29 > -+ > 2z, holds. Then

Jj 3=l
C":{ch*:quyj—f—Zn}',VjeN} (2)
i=1 i=1
s an inner approxrimation of C.

Corollary 2.4. The set {c+d:ce C~,d <0} is an inner approzimation of C.

These last two results motivate a natural algorithm for determining an inner approximation.
Solve each of the problems P; in turn, sort them by objective value, and compute the inner ap-
proximation as indicated in Theorem 2.3. This procedure can be modified slightly to potentially
reduce the number of solves.

Algorithm 2 begins with a problem of the form P and an optimal solution (z*,4*) with =* = 0.
It then adds a cut >,y 2; > 1, forcing at least one of the x variables to one. After resolving, it
determines which of the z variables switched, removes their coeflicients from the cut, and rcpeats.
The end result is a list of solutions, ordered by objective value, which covers all possible x variables.
(Variables not covered by any solution on the list are thosc fixed to zero in any feasible solution.)
For future reference, we formally define the relevant information gathered during the execution of
Algorithm 2 as follows. The solution in the k-th iteration is denoted by (z*, y*) and has objective
function value zj. The set Ik+ indicates which binary variables have value one in (2%, y*). The set
I,” indicates which of these variables have value one for the first time.

An outer approximation is easily obtained applying Remark 2.1 to each solution (z*, y*). To
determine an inner approximation, we must first establish a preliminary fact.

Proposition 2.1. Leti € I, for some k. Then (z*,y*) is optimal for P;.

Note that (z*, y*) is not necessarily optimal for P forjel ,jL \I, . We now combine Proposition
2.1 with Theorem 2.3 to construct our inner approximation.

Theorem 2.2. Suppose Algorithm 2 is run on problem P, terminating after { < n steps. Let
(2", 4*), 21, II.IE.V k=1,...,¢ and I be obtained from the algorithm. Then

G = e Z g <z'—z+ Z &Vl = L e 2l (3)

T V) 1 V)

is an inner approvimation of C.

It is important to note that the stability region C depends only on (z*, y*) and h(y), and not on
c*. However, the inner approximation we calculate using Algorithm 2 does depend on ¢*, because
c* appears in the right-hand side of each inequality and also because different starting costs may
determine different solutions in the algorithm when we add the inequality), ;x; > 1. So any
¢* € C can be used in Algorithm 2 to obtain a possibly different inner approximation.

We next address the quality of approximation of the inner and outer regions C~, C*t generated
by Algorithin 2. For any ¢ € C*\ C™, we are unable to determine the optimality of (z*,y*) for
P(c) without re-optimizing. Ideally, we would like to estimate the volume of this uncertainty region
C*\ C~, and perhaps compare it to the volume of C~ and C*. However, even for problems with
modest dimension we cannot efficiently estimate this volume.

In light of these computational difficulties, we have developed a “shooting” experiment to give
some idea of the relative sizes of C~, C* and Ct\ C~. Starting from the original objective vector
c*, we generate a random direction d by uniformly sampling each component from [0, 1]. We then
compute the quantities

)_zmax{('*-k)\ieC_})\+=max{c*+)\i60+}, (4)
A Il A llll
aud use the values to compare the relative sizes of C~ and C* in the direction d.

We performed the shooting experiment on the problem instances contained in MIPLIB 3.0.
For a given instance, we considered as x variables all binary variables that satisfied the following
conditions:

e The variable is not fixed to its optimal value in all feasible solutions. In terms of Algorithiu
2, this mcaus the variable does not belong to the set .

e There is no alternate optimal solution with the variable set to its complement. That is, we
have z* > z;.

We refer to such binary variables as “active.” If a particular MIPLIB instance did not have any
active binary variables, we discarded it. We also skipped probleins with more than 5,000 binary
variables and problems which did not solve to optimality within one hour of CPU time. All
computational experiments were carried out on a system with two 2.4 GHz Xeon processors and
2 GB RAM, and using CPLEX 11.1 (with default settings) as the optimization engine. For each
instance, we generated 100,000 direction vectors d.

Table 2 contains average results for our experiments. For each instance, we report the total
number of decision variables (# vars), the total number of binary variables (# bin), the nuber
of active binary variables (# active), the Euclidean norm of the cost vector corresponding to the
active variables (||c*||), the average A~ and A" values, and their ratio. For example, for problem
1seu, 85 of 89 decision variables are active. In the directions tested, C~ occupies 87% of the volume
of C*, but both regions allow only for a relatively small change in c*, since ||c*|| is significantly
larger than A\~ and A*.

As Table 2 indicates, the estimated volume ratio of C~ and C* varies significantly from one
instance to the next. On one end, Algorithm 2 delivers a fairly tight approximation for problens
demulti (92%), enigma (95%), and 1seu (87%), to name a few. In fact, Algorithi 2 even delivers
the exact stability region for p0033. On the other, the volume ratio is very small on instances such
as p2756 (7%), vpml (3%) and vpm2 (14%). This discrepancy is certainly in part duc to differences
in the number of active binary variables (14 in enigma and 2,391 in p2756,) since volume differences

tend to grow as dimension grows. However, part of this discrepancy is also instance dependent, as
some problems with similar number of active variables have very different ratios.

Overall, the experimental results indicate that the volume of C* \ C'~ is significant for some
instances.

Therefore, we next address the cause of this discrepancy: Are we under-approximating ('~ or
over-approximating C*t? To answer this question, we performed the following additional experi-
went. For each of the first 1000 random directions d that yield A= < A", we construct a new cost
vector

. ATHAT d TR
G =@ + 5 ||d||€C \C,
and re-optimize the problem with this new objective. We then count the number of times the
original optimal solution (z*,3*) remains optimal for the new cost vector cx. The next column in
Table 2 (OIO, for “original is optimal”) reports these counts for all instances except p0033. With
the exception of dsbmip, rentacar and rgn, the original solution is optimal most of the time, with
niost instances recording counts above 800 and many getting 1000. These results iudicate that
the uncertainty region C* \ C~ is caused primarily by an excessive under-approximation of C'~.
They also suggest that (z*,y*) is likely to remain optimal inside C*, even when this fact cannot
be guaranteed.

soouvysul ()¢ gITJIIN 10] s3nsar juowiiadxo Sunooys :z Jgrl,

Pes vLo 920 80°0 12°01 961 891 8LY zuda
096 £0°0 Ler o R9°01 PIT K91 RLE Tuda
0001 €L0 £LT11 68 VO+EY60'1 | SET 0ve 493 yo13es
0 120 €6°L 196G 0 09 001 081 u3a

0 66°0 FO+ERG0'9 | $O+H0Z09 | 0 T g 1586 Teoejusx
0001 160 €0'8 6LL 0 0921 8871 1$S1 T1aub
0001 00°0 €08 0 0 0921 8821 5241 o-r3aub
0001 Lo 6S°ST 8I'IT LEVT v9 ¥9 ove slnoegodd
0001 L0 6S°ST 8T11 LEVT v9 ¥9 ove egodd
0001 69°0 £v0 00 0 o g 98 1ad
£06 200 61°G ce0 VO+ALIVE | 16€T 96.T | 9¢L2 952zd
8L6 (1] LT°ST 0g's vO+H0ZF 1 | V8V |G |YS sysod
0001 vr0 TH0E 68 C0+HSL6'T | TRT 782 8T zscod
0001 £€°0 RIS 2081 218 Ie1 102 10 10Z0d
z 00T 19°¢ 19¢ <6 1z £e £e eg00d
0001 ¥1°0 T88T1 £0L1 c0+HdZ6T'1 | 86 86 v qotT3pou
0001 €0 SO+HKSELE | COHHTITT | LO+F00V'T | 96 96 86601 110pow
0001 €0 ST¥ ov'1 05€6 £EVT ¢e9z | 9692 010OPOW
0001 8€°0 QL £8C 91T 1ig 61¢ 61¢ go0pPou
0001 €90 /Y1 960 0 Al AN 8081 909sTuU
0001 62°0 vae 101 0 00T 6S1 091 £0osTu
0001 180 L9°6ST 16°06 ¥0-d002'T | oSt 0sT 161 9.Lsel
0001 zro ¥t 620 ¥ 91 81 12€€ 1geuUen
0001 1870 A4 coy T¥61 a8 68 68 nos{
0001 860 v0°01 ¥8e 0088 8861 6861 | 6861 ARTZSTIT
668 15°0 G0+de8Y'9 | SO+HLIEE | LO+HSTTT | ¥e Ve 0S€1 05Z50quX
0001 Y20 906¥ 0811 Y0+dZ0eT | T1 ¥ 881 718
0001 ¥0°0 C0+d88Y'T | VO+AYOI'T | SO+HLRY9 | 91T 912 61 cesal
L66 €00 £IE0L VEBI 90+H919°L | 9¢€ 9¢g 6Tl o-gesa3
969 8C°0 e867 0TLI C0+HL0EL | OVT 0¥e ¥TT1 Zesed
0001 ov'o 916 £9¢ 90+HET9L | £8€ V8E ¥CTl o-zess3
066 AN(] SYve 1621 0291 00T i 0.8 a3
0001 180 8T 86T 909¢ |LE |LE 8L8 939UXT]
0001 ¥6°0 608 9L 90+H291°€ | 6£T1 ¥eTT | 86T I9q1]
0001 S6°0 €0 1£°0 1 4l 001 001 eu3tus
0001 [§40) 9LL 12°¢ S11 8T qc i 1noBa
0 8.0 290 8%°0 0 vi 091 9881 drugsp
066 60 GLLT 1291 0zTy L L 816 T2TNWOP
0001 €0 81°0 80°0 86°G¥ 1 €2 £ag zpualq
0001 ce0 GL8ST Lv68 c0+d609'1 | 07 0¢] ST1Toq
VTl 6L°0 SO+HOEY' T | SO+H6ZTT | SO+HESS'T | 1€ 68 £e1 eEITq
(-1u12) 010 m% (Bae) LY (8ae) Y II,2]l AR # | uiq # | srea # wa[qolg

For further details on the approach and computational experience with the algorithms see:

F. Kiling-Karzan, A. Toreillo, S. Ahmed, G.L. Nemhauser, M.W.P. Savelsbergh. “Approxiniating
the Stability Region for Binary Mixed-Integer Programs.” Submniitted to Operations Research
Letters (2008).

3 Information-based Branching for Integer Programming

Branch-and-bound (BéB) empowered with advanced features such as presolve, cuts, heuristics and
strong branching is the preferred algorithm for solving Mixed-Integer Linear Programming (MIP)
problems. We focus on branching. A subproblem corresponding to a node in a BéDB-tree is fathomed
when we are able to certify that it has been fully explored, that is, all feasible solutions to it have
been explicitly or implicitly visited; otherwise, it’s referred to as an open subproblem. In a B&B-
scheme, open subproblems are generated in a rigid way, depending on the branching rule. In fact,
every open subproblem is restricted to be identical to a previously examined subproblem except for
its last chronologically branched variable. Therefore, inappropriate branchings performed at the
beginning can jeopardize the effectiveness of the branch-and-bound method.

Changing the policy for branching variable selection can have a dramatic effect on the over-
all time needed to solve a problem. Most existing branching variable selection metliods either
estiniate the impact of the candidate variables on the objective function of the LP relaxation or
provide bounds on the degradation. The candidate variable having the greatest estiimated inipact
is then chosen for branching. The motivation is to select the branching variable that nmiaximizes the
degradation of the objective function value at the optimal solution of the child node LP relaxation.
which gives a tighter bound on the unsolved nodes.

The “information-based variable selection methods” we have developed use a variety of means
to estimate the impact of each candidate variable on fathoming based on previously collected
information. These new methods recognize that the branching decisions made at the top of the tree
are the most important ones. In order to make more informed decisions at the top, first a traditional
B Bis started and after a certain amount of inforimation is collected from the fathomed nodes, the
process is halted. A restart of the BédBempowered by exploiting the information contained in a set
of previously fathomed subproblems is performed. In contrast to the current branching variable
selection methods based on the degradation estimate in the objective function value, we favor the
variables that have the most impact on the fathoming of the child nodes. The generat idea is to
arrive at child nodes which are closer to being fathomed, in the hope that one or both of the child
nodes will never be expanded. Note that using the information derived directly from the previous
search nodes, as in backjumping or learning BéB, may be ineffective, as they have been “spoiled”
by inappropriate branchings earlier in the process. Instead, in our approach, we strengthen the
information on fathomed subproblems by eliminating the unnecessary branching decisions which
had no effect on their fathoming. In addition to new branching methods, we use this information
in propagation and in the generation of valid inequalities.

We consider the MIP problem

mi11{0T$+dIy | Az + By >b, r €{0,1}", yeR'j;} (P)

where ¢ € R*, d € R¥, b € R™, A € R™" and B € R™**. Its LP relaxation is obtained by
replacing z € {0.1}" by 0 <z < 1.

Recall that in a Bé B-tree, or for short a tree, a node can be fathomed in three ways: (i) the
node LP-relaxation is infeasible, (ii) the optimal solution to the node LP-relaxation is integer, and
(1ii) the optimum value of the node LP-relaxation is no better than the objective value of the

10

currently best known integer feasible solution. To formalize the notion of fathoming, we use the
following notation.

We say f]l» is the fizing of the variable j to the value [€ {0,1}. Let Ny denote the root node,
N; denocte a node in the tree and C; = C? U C’i1 be the set of binary variables fixed at node N,
where C? (C!) denotes the indices of binary variables fixed to 0 (1). Without loss of generality, we
assuime that Cy = 0.

Definition 1. If N; is a fathomed node of a binary tree, then C; is called a clause corresponding
to node N;. When |C;| = n, the clause is called trivial.

Definition 2. Let C be a clause. If C'\ f]l- is not a clause for any f]l» € C, then C is called a
nunimal clause.

If C is a minimal clause, any node NN; in the tree with C; C C cannot be fathomed by any of the
fathoming rules. Moreover any node N; with C; D C ean be fathomed together with the subtree
rooted at N,. Note that there exists a minimal elause (not neeessarily unique) assoeiated with each
fathomed node in any binary tree.

Given a elause C = C° U C?, the inequality

dom+) (l-z)21 (5)

1€CC ieC!

eliminates all solutions that do not eomply with it. Clearly (5) might cut off somne feasible solutions.
However, the region eut off by (5) is guaranteed not to eontain any feasible solution with an objective
value better than the optimal objective value. Note that (5) is a generalized eover inequality and
hence by obtaining mininal clauses, we actually derive a minimal generalized cover inequality for
(Bl

We wish to efficiently identify the most useful clauscs and use them effectively in Bé9Bby
exploring the restart framework. Our approach is mainly based on deriving information in the
form of elauses from the fathomed nodes of a partial tree. We employ this information in guiding
the search through designing advaneed preproeessing, propagation and branehing sehemes as well
as in generating valid inequalities of the form (5). It is quite likely that the elauses obtaiued from a
partial tree are not mininal. So we strengthen the information on fathomed nodes by eliminating
the unneeessary fixings whieh had no effeet on fathoming. We do this by solving a MIP model that
obtains a mininial elause from a given clause.

Next, we present a model that ean be used to generate a minimal elause of minimum cardinality.
Without loss of generality, we assume that the upper and lower bounds of the binary variables are
also included in the original formulation as eonstraints. Let v* be tlie objeetive value of the optimum
solution to (P). We ean fathom any node of the tree whieh is either infeasible or has an objective
value greater than v*. Fathoming by integrality is quite infrequent in praetiee and given v*, we can
simply fathoin all nodes with objective value greater than or equal to v*, which includes fathoming
of all integer solutions as well.

Consider a leaf node of the tree that is fathomed by bound and denote the eorresponding set
of variable fixings by C = C°U C!. The LP relaxation of this leaf node is

mincl z + dly
st. Ar+ By > b
z; > 1 Vi e Ct
-z; >0 vi € C°
z€RY, yeRE

11

Define the following variables:

L0 1, if inequality —z; > 0 is added to the LP relaxation;
i 0, otherwise,

and

—_

, if inequality x; > 1 is added to the LP relaxation;
, otherwise.

=]

Using these new variables, the following MIP

minc’z +dly
st. Az + By > b
zilm,- > zil Vi &t
= 2 25) Yie g°
reR?, yeRE
2.2} e {0,1}.

is equivalent to the node LP when all of the binaries in it are set to 1.

We want to find a minimum number of bound inequalities such that their inclusion in the
original linear programiming relaxation of (P) will still lead to a fathoming, i.e., either the LP
relaxation is infeasible or the objective value exceeds the lower bound value, v*. Since the original
root LP relaxation is assumed to be feasible and bounded from below, its dual is also feasible. Thus
we know that in the case of infeasibility of the node LP, the dual of the node LP is unbounded
since when we add new bound inequalities to the primal, we are just adding new columns to the
dual of the node LP. Therefore when a node is fathomed by infeasibility, we will be able to find a
dual solution with an objective value strictly greater than v*. So now we consider the dual of the
above formulation by treating the variables z? and zi1 as parameters and we obtain

max A+ Z v}
e
git. AT A4 ’71-121-1 <e¢ Vie(C!
MNA -0 <e; VieC®

i

A4 <q Vie{l,...,n}\(C'ucCh)
M'B; < d; vie{1,...,k}

A >0 vie{l,...,m}

.4 =0

Since we are only interested in the existence of dual solutions with objective value greater than
or cqual to v*, we can equivalently turn the objective into a constraint. By considering z! and
z! as binary variables with the condition that at most one of them can be set to 1 for each i

(since C® N C! = @, we don’t necd to include these constraints explicitly), we obtain the following

formulation where we minimize the number number of z{ and 2}

i
min E z?—f—g zil

i€Co ieC!
st. ATo+) ~lzl 2o
eC!

Niebpe <o ek
MTA; -0 <e; viel®

M4 < ¥ie {1,... . n}\ (C®ugh
ATB; < d; vie{1,...,k}
N >0 vie{l,...,m}

z?,zll € {0,1}, Y.+l >0

In order to bound the dual variables v and A from above by 1, we introduce another variable
« and also to linearize the model, we introduce v and u! for the nonlinear terins 7¥z? and ~!z!

respectively:

1in E z?—i—g 7

1eC0 ieC!
b XFh+ Z ul —av* >0
1eC1
/\TAi+u§—oci§O vie C!
MWy —ul —ag; €0 vie C°
ATAi—ae; <0 e [T o n A AR 0E™Y
MBj—adj<0 vie{l,...,k}

11?57?, uogz?, u?—'y?—zoz—l vie C°
1
K

e gleag 2] WiEl"
0<\N<1 vie{l,...,m}
zle {011}7 OSU?»U117?171:1 Sl

1

Note that the fixing of the last variable on the path from root node to a leaf node is the main
cause of fathoming done at the leaf node. Hencc in any feasible solution to the above formulatiou,
we will always have the corresponding binary variable (z{ or 2}) fixed to 1. In our computations,
we take advantage of this fact by actually fixing the value of the last branched variable in this MIP
and we replace a > 0 with a > 1076,

Let C = {Cy,...,Ck} be a set of clauses in a partial tree. Consider a node of the tree N other
than the root node, and let C%(C!) denote the set of binary variables fixed to 0 (1). We say a
clause C = COUC! is active at N if C°NC! =0 and C'NC® = 0, i.e. if it’s possible to obtain a
child node (not necessarily immediate) from the current node that can be fathomed by the clause
C. Whencver a clause becomes inactive for a particular node, it will remain inactive for all the
child nodes of that node. Since some variables are already fixed at N, the active clauses can be
updated using this information, i.e., the clause C = (C°\ €% U (C! \ C!) indicates the possible
extension of the current node to a child node which can be fathomed by clause C. In the rest of
the text whenever we refer to an active clause at a node, we actually refer to the updated version
of the clause.

Whenever an active elause C lias only one variable, ie., |C| = 1, we can immediately fix the
value of that variable. Suppose C = C° = {j}, then we can set z; = 1 and create only a single
child node, as the other braneh will automatieally be fathomed by the elause. We refer to this as
propagation.

Given a node and a set of aetive elauses at that node, there are several ways to use this
information in determining a branching variable. Let Z be the vector of eurrent LP relaxation
values of variables at the node. We first weight each active elause, denoted by w(C;), to estimate
its importanee in fathoming. We have tested four different alternatives to estimate w(C;):

1) w(C;) =1 for all elauses C; (i.e. all elauses are of equal nuportanee),

i) w(C;) = (,L where |C;| is the number of variables included in elause C; (i.e. short clauses are
preferred),

i11) w(C;) = Y ieco HH 1 (1-E5)-1 where we look at the possible closeness to violation of the

clause inequality (5),
w) w(C;) = 271G (exponentially higher preference given to the shorter elauses).

Then using the weights of the elauses, we estimate the effeetiveness of fixing the binary variable
z;j to 0 (1), denoted by 13;-) (/j]l) We have tested two alternatives to estimate the overall effect of
creating a braneh with x; = 0(1):

i) 8] = Zi:je(‘? w(C;) and d} = Zi..jecll w(Cy),
i)) = max{w(Ci): j € C%} and B} = max{w(C;) : j € C}}.

Let 3; denote the overall effect of a branehing on variable x;. To estimate 3;, we need to
combine d;-’ and d}. Inspired by eurrently used branching rules, we suggest aud test the following
alternatives:

i) B =min{Z;, 1 —;} * (d? + ,3}),
i) B; =P+ 8],
w) f; = max{@), 5} } + 10 min{3?, 5} }.

Note that the first alternative considers the fraetionality of the variable, wliereas the second one
sinmiply adds the individual effects and the third one is similar to the weights used in strong brauch-
ing.

In Table 3, we report eomputational results for a set of diffieult instanees from MIPLIB. We
provide information about the eolleetion phase (solve time, number of elauses eolleeted and the
average size), the improvement phase (minimum, average, and maximum solve time, nunber of
clauses improved, average size after improvement), and the solve phase (number of nodes and
solution time CPLEX, inforination-based seareh with basic clauses Basic, and information-based
search with improved clauses Improved. If we eompare the node eounts for CPLEX and Improved,
we see that in all of the instances the node eounts deerease and the improvements in harder problems
are niore significant (for mas74 redueing from 1656970 nodes to 1167900 nodes, for qiu from 15862
to 5139, and for rout from 45051 to 10933). These improvements in node eounts also generally
lead to improvements in solution times.

14

SPoURISULl JNOYJIP 10} S3NSIY ¢ d[qe],

LEV6 LEV6 LG°L6 coe v0'0 0 62%1 ourry
69681 69681 62F1Z [¥es1 0 4 8 0 FQST 002 1481 sopou # gputais
98291 96 V9¥ v9°L9S €5°C 620 S00 6889 auir}
££601 19862 160GY 126 6 9 I 0 V0L 92 €ITL1 | sepou # anox
£ 29. 68 FPPT £6°9G61 78°C18 SIS 990 V2L 812 aurry
6£1S L2201 798S1 69'21 801 0£2G1 £L0T 0 £9°S1 002 1011 sapou # ntb
LvTse 12°6€2T 66762 9L L1 ¥0 100 169 aury
62862 6VEVL 68666 | G261 911 986V 16¥ 0 TL62 002 6SE1 sapou # Tad
€L0TLL £L0TLT LOLIST COLS6TL €809 96'%S - BTT60T ourry
21t (484! 9821 8 L1 0 0 0 0 LT 00T 8¢ sopou # yroPOowW
6£° 161 6L 112 A Tad ST 9p ¢6°0 100 1002 auur)
v0zZ., £692 1826 6501 THT 8101 051 0 96T 002 8.5 sapou # ,0dstw
68161 69°8GT AR A v6'01 820 100 69°C ourry
£E19¢T C9S9TT ¥Z90ST | S6'€l RZI 9€7T JX43 0 L6700z 9g01 sopou # g seu
L0182 L¥GT L8'8682 9L12 £vo £0°0 g aurr)
0064911 PL688T1 0L69591 | 261 ¥el v8LY 662 0 6292 002 vGTl sapou # pseu
6001 9¢€°96 pe101 188 901 16°0 r0°96 owr)
€€LC F8YC 0£99 681 [0 0 0 7e’S 6 S6ES sopou # o"zesad
panorduly nsog Xq1dD azis # (1®107) (xew) () [az1s # wa[qol]

asey jusuwasoiduy

aseyd uor32a](0,)

15

For further details ou the approach and additional computational results, see:

F. Kilm¢-Karzan, G.L. Nemhauser, M.W.P. Savelsbergh. “Information Based Branching Rules for
Binary Mixed Integer Problems.” Submitted to INFORMS J. on Computing (2009).

16

